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We use the generalized Tsallis entropy Sv(q 5 e(1 2 (W
i51 pq

i )/(q 2 1) to study
the information measurement in position and momentum space for simple quantum
mechanical systems. We consider here the hydrogen atom in three dimensions and
the D-dimensional harmonic oscillator to calculate the position and momentum
entropies analytically for ground and excited states which involve classical
orthognal polynomials. In both the cases we verify the generalized entropic
uncertainty relation and pseudoadditivity relation. We also study the effect of
screening on the entropies. We compare the present results with the corresponding
results of the Shannon formalism.

1. INTRODUCTION

Since the development of the theory of information by Shannon (1949)
it has been widely used to study the properties of complex microscopic
systems, including the foundations of quantum mechanics, and above all in
the science of control and automation of dynamical processes. An information
measure closely related to the concept of entropy in thermodynamics and
was defined by Shannon (1949) as

Sv 5 2# v(x) ln v(x) dx (1)

The quantal entropy Sv is, briefly, the expected amount of information present
in the the probability distribitution v(x) in x space. Information entropies
have shown to play an important role in the quantum mechanical description of
physical systems. A possible generalization of the Boltzman–Gibbs–Shannon
entropy proposed by Tsallis (1988) for nonextensive systems has drawn
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considerable attention in the physics community. Intensive research has aimed
at formulating a generalized statistical mechanics, namely a Tsallis statistics
and thermodynamics, which could be universal. Tsallis statistics has been
successfully used to study a variety of problems in many different areas,
such as the specific heat of hydrogen (Lucena et al., 1995), the rigid rotator
(Curilef and Tsallis, 1995), the infinite-range Ising ferromagnet. (Nobre and
Tsallis, 1995), fractal random walks (Alemany and Zanette, 1994), q-quantum
mechanics (Tsallis, 1994), turbulence in an electron plasma (Boghosian,
1996), the solar neutrino problem (Kaniadakis et al., 1996), nonlinear dynami-
cal systems (Tsallis et al. 1994), cosmology (Hamity and Barraco, 1996),
and many other systems. The generalized nonextensive Tsallis entropy is
defined as

Sv(q) 5 e
1 2 (W

i51 pq
i

q 2 1
(2)

where e is a conventional positive constant (we will consider e 5 1), q is any
real number that characterizes a particular statistics, and {pi} is a normalized
probability distribution, (W

i51 pi 5 1. In the limit of q → 1 Eq. (2) yields the
conventional Boltzmann–Shannon logarithmic expression (1) for the entropy.
When q 5 1, the physics is an extensive one. In all other cases we are led
into the realm of nonextensivity. Various properties of the usual entropy have
been proved to hold for the general one: positivity, equiprobability, concavity,
and irrereversibility. Its connection with thermodynamics is now established
and suitably generalizes the standard additivity as well as the Shannon
theorem.

In quantum mechanics, problems are formulated either in coordinate (r)
space or in momentum (k) space, depending on which is more convenient
for the problem considered. Thus from (2) we can write

Sr(q) 5
1

q 2 1
(1 2 # d Dr .r(r).q) (3)

and

Sg( p) 5
1

p 2 1
(1 2 # d Dk .g(k).p) (4)

for the position and momentum space entropies, respectively, where r(r) 5
.C(r).2 and g(k) 5 .C̃(k).2 are the quantum mechanical probability densities
in r space (coordinate space) and k space (momentum space), respectively.
Here C̃(k) stands for the Fourier transform of C(r), the r-space eigenfunction
of a central potential,
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C̃(k) 5
1

(2p)n/2 # d Dr C(r)e2ik,r (5)

The two entropies Sr(q) and Sg( p) can be combined in a suitable way
to have new generalized uncertainty relations which are valid for a large
class of systems, extensive or nonextensive. We can have an entropic uncer-
tainty relation based on the Sobolev inequality (Massen and Uffink, 1988;
Rajagopal, 1995). In this formulation the uncertainty relation becomes

[1 1 (1 2 p)Sg( p)]1/2p

[1 1 (1 2 q)Sr(q)]1/2q # 1p
q2

2n/4q

1p
p2

n/4p

(6)

with the condition 1/p 1 1/q 5 2.
For two independent systems A and B, the Tsallis entropy of the com-

posed system A 1 B [so that the probability of the composed system is
pij (A 1 B) 5 pi (A)pj (B)] satisfies the pseudoadditivity relation (Portesi and
Plastino, 1996; Santos, 1997)

SA1B(q) 5 SA(q) 1 SA(q) 1 (1 2 q)SA(q)SB(q) (7)

Here SA1B(q) also represents the entropy of the joint probability state. The
parameter q denotes the degree of the nonextensitivity of the system consid-
ered. For example, in case of interacting systems it implies the effect of long-
range interactions. We observe that for q Þ 1 the entropies are nonadditive,
i.e., SA1B(q) Þ SA(q) 1 SB(q). Both of these relations (6) and (7) are fully
characterized by the parameters p and q, which are arbitrary real numbers.

Recent years have witnessed a growing interest in the application of
information entropies to the fundamental problems of quantum mechanics.
Our objective in this work is to employ the generalized Tsallis entropy to
study two fundamental physical systems: the isotropic harmonic oscillator
with a potential of type VHO(r) 5 l2r 2/2 and the hydrogen atom with Coulomb
interaction. Yãnez et al. (1994) studied coordinate- and momentum-space
entropies for the D-dimensional harmonic oscillator and the hydrogen atom
using Shannon’s formalism for both ground and excited states. They found
simple analytical results for the ground states. But inordinate complications
were encountered in treating the excited states due to the presence of polyno-
mials in the excited-state wavefunctions. The logarithm of these polynomials
presents difficulties in evaluating entropy integrals analytically. Recently
Bhattacharya et al. (1998) presented a mathematical trick to deal with these
complications for hydrogenic excited states. It is interesting to note that the
Tsallis formalism not only provides a general entropic relation valid for both
extensive and nonextensive systems, it also simplifies the calculational labor
to a great extent. The Shannon entropy is a particular or limiting case of the
Tsallis entropy (for q → 1), so it can always be calculated from the latter.
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We can evaluate almost all the entropy integrals analytically using standard
integrals (Gradshetyn and Ryzhik, 1965). Our second objective is to examine
the effect of screening on the generalized entropic relations (6) and (7) and
thus gain some physical insight about Sv. To the best of our knowledge there
is no previous attempt to evaluate the information entropy integrals for these
systems using the Tsallis generalized entropy.

The outline of the paper is as follows: In section 2 we consider the case
of the D-dimensional harmonic oscillator and calculate the position and
momentum information entropies analytically and also verify the relations
(6) and (7). Relation (7) also allows us to obtain the expression for the joint
probability state in all the cases. In Section 3 we do the same for the hydrogen
atom in three dimensions. In Section 4 we investigate the effect of screening
on Sr(q) and Sg( p), using the Hulthén potential (Hulthén, 1942) as a model
for the screened Coulomb interaction.

2. THE D-DIMENSIONAL HARMONIC OSCILLATOR

The normalized eigenfunctions of the D-dimensional harmonic oscillator
in position and momentum space are given by

Cn,l,{m}(r)

5 F 2n!ll1D/2

G(n 1 l 1 D/2)G
1/2

r l e2lr2/2Ll1D/221
n (lr 2)Yl,{m}(VD) (8)

and

C̃n,l,{m}(k)

5 F 2n!l2l2D/2

G(n 1 l 1 D/2)G
1/2

kl e2k2/2lLl1D/221
n 1k2

l2Yl,{m}(ṼD) (9)

where the Yl,{m}(VD) are the hyperspherical harmonics (Yãnez et al., 1994)
and VD(ṼD) is the solid angle in position (momentum) space. The symbol
La

n(t) denotes the Laguerre polynomial.
The position-space information integral in the generalized form for the

harmonic oscillator can be obtained as

Sr(q) 5
1

q 2 1 F1 2 1 2n!ll1D/2

G(n 1 l 1 D/2)2
q

I1I2G (10)

where the integrals I1 and I2 are given by
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I1 5 # r 2lq1d21 e2lr2q[Ll1D/221
n (lr 2)]2q dr (11)

and

I2 5 # [Yl,{m}(VD)]2q dVD (12)

I1 and I2 are the generalized entropies for the Laguerre polynomial and
hyperspherical harmonics, respectively. In momentum space we can write
the generalized entropy as

Sg( p) 5
1

p 2 1 F1 2 1 2n!l2l2D/2

G(n 1 l 1 D/2)2
p

I3I2G (13)

where

I3 5 # k2lp1d21 e2k2p/l[Ll1D/221
n (k2/l)]2p dk (14)

We give the explicit expressions for the entropies of the one-, two-, and
three-dimensional harmonic oscillator for both the ground and excited states.

For the ground state, n 5 0, we can write in position space

SHO
r (q) 5

1
q 2 1 F1 2 1l

p2
D(q21)/2

1
qD/2G (15)

and in momentum space

SHO
g ( p) 5

1
p 2 1 F1 2 1 1

lp2
D(p21)/2

1
pD/2G (16)

where D is the dimension of the system. The entropy expressions in Eqs.
(15) and (16) satisfy the uncertainty relation (6) and pseudoadditivity relation
(7), which is independent of the potential strength of the harmonic oscillator,
as expected, and also recover the results of Yãnez et al. (1994) in the limit
q → 1. We can also obtain the generalized joint entropy expression from (7) as

SHO
r,g (q) 5

1
q 2 1 F1 1

pD(12q)

qD G (17)

Let us now consider the excited states of the harmonic oscillator, which
needs some separate attention.
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2.1. One Dimension

In the excited state n 5 1 we get

SHO
r (q) 5

1
q 2 1 F1 2 1 2

!p2
q

l(q21)/2 G(q 1 1/2)
qq11/2 G (18)

and

SHO
g ( p) 5

1
p 2 1 F1 2 1 2

!p2
p

11
l2

(p21)/2
G( p 1 1/2)

p p11/2 G (19)

From the general expression of the information entropies (10) and (13) for
an arbitrary value of n we plot Sr and Sg for different states with quantum
number n varying from 0 to 20 in Fig. 1 for l 5 1/2. Here we choose two

Fig. 1. Information entropies in position space Sr and momentum space Sg of the one-dimen-
sional harmonic oscillator with strength l 5 1/2 and p 5 q 5 2, 3 versus principal quantum
number n. The upper (lower) set of curves is for p 5 q 5 2 (3).
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particular values of p and q, p 5 q 5 2 and p 5 q 5 3, to exemplify the
dependence of Sr and Sg on them. We observe that both quantities initially
increases with n and then tend to saturate for higher values of n. We also
note that the entropies decrease with the increase of p and q for the same
value of n. In this context we comment that for p , 1, q , 1 we observe
an increase of entropy with increase of p and q. The maximum value of
entropy occurs at p 5 1, q 5 1 (Portesi and Plastino, 1996).

2.2. Two Dimensions

For the first excited state, n 5 0, m 5 1, we get

SHO
r (q) 5

1
q 2 1 F1 2 1l

p2
q21

G(q 1 1)
qq11 G (20)

and in momentum space,

SHO
g ( p) 5

1
p 2 1 F1 2 1 1

lp2
p21

G( p 1 1)
p p11 G (21)

The values of Sr(q) and Sg( p) for the excited state with n 5 0, m 5 21 are
same as those with n 5 0, m 5 1. As observed in one dimension, the entropies
satisfy the relations (6) and (7) are independent of the potential strength l.
From Eq. (7) we find the joint entropy as

SHO
r,g ({p, q}) 5

1
q 2 1 F1 1

1
p2(q21) [G(q 1 1)]2q2q12G (22)

2.3. Three Dimensions

We can write for information entropy in position space with n 5 0, l 5
1, m 5 0,

SHO
r (q) 5

1
q 2 1 F1 2

3q

(2p)q21

l3(q21)/2

(2q 1 1)qq13/2

G(q 1 3/2)
[G(5/2)]q G (23)

and in momentum space,

SHO
g ( p) 5

1
p 2 1 F1 2

3p

(2p)p21

l23(p21)/2

(2p 1 1)p p13/2

G( p 1 3/2)
[G(5/2)]p G (24)

If we consider the case of excited states with n 5 0, l 5 1, m 5 1, we get
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SHO
r (q) 5

1
q 2 1 F1 2

(3/8)q

pq23/2

l3(q21)/2

qq13/2

G(q 1 1)
[G(5/2)]qG (25)

and

SHO
g ( p) 5

1
p 2 1 F1 2

(3/8)p

pp23/2

l23(p21)/2

pp13/2

G( p 1 1)
[G(5/2)]pG (26)

The values of the Sr(q) and Sg( p) are the same for the states (n, l, m) and
(n, l, 2m). In three dimensions the combined entropies in (6) and (7) are
seen to be independent of the potential strength of the harmonic oscillator,
as has been observed before. From (7) we find

SHO
r,g ({p, q}) 5

1
q 2 1 F1 1

(3/8)2q

p2q23[G(5/2)]2q

[G(q 1 1)]2

q2q13 G
for m 5 61 (27)

Moreover, we verify that in the limit q → 1 the expressions for the information
entropies as calculated in the above section, both in coordinate and momentum
space, identically give the Shannon–Boltzmann entropy as obtained by Yãnez
et al. (1994) for the same system. So we see that the Shannon entropy is
just a particular case of the more generalized Tsallis entropy.

3. HYDROGEN ATOM

The wavefunction for the ground state of the hydrogen atom (in atomic
units) is given by

C1s(r) 5
1

!p
e2r (28)

The corresponding wavefunction in momentum space is given by

C1s(k) 5
1
p

2!2
(1 1 k2)2 (29)

By applying similar procedures described in the previous section we get the
information entropies Sr(q) and Sg( p) in a closed analytical form:

SH
r (q) 5

1
q 2 1 F1 2

1
q3pq21G (30)

SH
g ( p) 5

1
p 2 1 F1 2

23p12

p2p21 I4G (31)
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where

I4 5 #
`

0

k2

(1 1 k2)4p dk 5
!p G(4p 2 3/2)

4G(4p)
(32)

In the limit of extensivity we can easily verify from Eq. (30) that

lim
q→1

SH
r (q) 5 3 1 ln p (33)

The rhs of the above equation is exactly the same expression as obtained
earlier (Yanez et al., 1994; Bhattacharya et al., 1998) in the case of the
hydrogen atom using the Shannon entropy formalism. Thus once more we
observe through a simple physical system that the Tsallis entropy is a more
generalized version of the conventional Boltzmann–Shannon expression. The
entropy of the joint probabilty state in this case can be obtained in a straightfor-
ward manner from Eq. (7) using (30) and (31).

Now let us consider the excited states of the hydrogenic atom. The
calculations for the excited states are not as trivial as in the ground state.
However, we can obtain the results analytically with some algebraic manipula-
tions. Here we consider H(2s) and H(2p) states. The H(2s) wavefunctions in
position and momentum space are given by

C2s(r) 5
1

4!2p
(2 2 r) e2r/2 (34)

and

C̃2s(k) 5
16
p

1 2 4k2

(1 1 4k2)3 (35)

respectively. For (34) the position-space entropy becomes

SH
r (q) 5

1
q 2 1 F1 2

1
25q22 p2q21 I5G (36)

where

I5 5 #
`

0

r 2(2 2 r)2q e2rq dr (37)

With the change of variable r 2 2 5 x we can rewrite and evaluate I5

analytically as

I5 5 #
`

22

(x 1 2)2 x2q e2(x12)q dx 5 A 1 B 1 C (38)
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with

A 5 4e22q FG(2q 1 1)
q2q11 1

22q13

2q 1 1 1F1(1, 2q 1 2; 2 2q)G
B 5 2e22q FG(2q 1 2)

q2q12 2
22q12

q 1 1 1F1(1, 2q 1 3; 2 2q)G (39)

C 5 e22q FG(2q 1 3)
q2q13 1

22q13

2q 1 3 1F1(1, 2q 1 4; 2 2q)G
where 1F1[?] are confluent hypergeometric functions.

Similarly for (35) the momentum-space entropy becomes

SH
g (p) 5

1
p 2 1 F1 2

44p11

p2p21 I6G (40)

where

I6 5 #
`

0

(1 2 4k2)2p

(1 1 4k2)6p k2 dk (41)

To evaluate I6, we substitute (1 1 4k2)21 5 x and obtain the result in terms
of hypergeometric 2F1[?] functions. We thus obtain

I6 5
G(2p 1 1)

24p15/2 FG(3/2 2 6p)
G(5/2 2 4p)

1
G(23/2 1 4p)
G(21/2 1 6p)G

2F112
1
2

, 4p 2
3
2

; 6p 2
1
2

;
1
22

1 !p 22p26FG(23/2 1 6p)
G(6p) G 2F111 2 6p, 22p;

5
2

2 6p;
1
22 (42)

Next, we consider the excited hydrogenic state with n 5 2 and l 5 1. The
wavefunction for the H(2p) state in coordinate space is given by

C2p(r) 5
1

!24
re2r/2 Y1m(V) (43)

where m 5 0, 61. The corresponding position-space entropies are obtained as

SH
r (q) 5

1
q 2 1 F 1 2

2225q p12q

q2q13

G(2q 1 3)
2q 1 1 G for m 5 0 (44)

SH
r (q) 5

1
q 2 1 F 1 2

2126qp3/22q

q2q13

G(q 1 1)G(2q 1 3)
G(q 1 3/2) G
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for m 5 61 (45)

The momentum-space wavefunction for H(2p) is given by

C̃2p(k) 5 2i
128

!3p

k
(1 1 4k2)3 Y1m(Ṽ) (46)

The expressions for the momentum-space entropies become

SH
g ( p) 5

1
p 2 1 F 1 2

(21)p46p11

p2p21(2p 1 1)
I7G for m 5 0 (47)

SH
g ( p) 5

1
p 2 1 F 1 2

(21)p211p11

p2p23/2

G( p 1 1)
G( p 1 3/2)

I7G for m 5 61 (48)

where

I7 5 #
`

0

k2p12

(1 1 4k2)6p dk 5 11
42

p12
G(2p 1 2)G(4p 2 2)

G(6p)
(49)

where we use the same substitution as in I6. Here we comment that although
the Shannon entropy is a particular case of the Tsallis entropy, the calculations
for the excited states of hydrogen become much more complicated due
to the presence of the log term and need a lot of algebraic manipulation
(Bhattacharya et al., 1998). However, within the Tsallis formalism we can
evaluate the integrals in a straightforward way using gamma and hypergeo-
metric functions. This can be considered as an advantage of using the Tsallis
entropy. Both H(2s) and H(2p) satisfy the uncertainty relation and pseudoaddi-
tivity relation, as expected.

4. EFFECT OF SCREENING ON THE INFORMATION
ENTROPY

The Yukawa potential is often used as a model for screened and cutoff
Coulomb interactions, but the eigenvalue for this interaction cannot be solved
analytically. We have therefore chosen to work with the two-parameter (V0,
a) Hulthén potential given by (Hulthén, 1942)

V(r) 5 2V0
e2r/a

1 2 e2r/a where V0a . 0 (50)

This potential behaves like a Coulomb potential Vc 5 2V0a/r at small values
of r, whereas for large values of r it decreases exponentially, so that its
capacity for bound states is smaller than that of Vc. Alternatively, (50) will
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exhibit the same behavior as a → `. If we work in atomic units, the correct
Coulomb limit will be obtained as a → ` and V0a → 1. With a regarded as
a screening parameter, the Hulthén potential has been widely used as a
judicious model for screened interaction. In the following we make use of
wavefunctions given in Flügge (1974) and Laha et al. (1988) to study the
effect of screening on the position and momentum information entropies.

The normalized ground-state (1s) coordinate-space wavefunction for the
Hulthén potential can be written as

C1s(r) 5
1

!p 1a1

a 2
3/2

e2(a1/a)r (51)

with

a1 5 V0a2 2
1
2

(52)

The momentum-space wavefunction corresponding to (51) is given by

C̃1s(k) 5
a1(2a1a)3/2

p(a2
1 1 a2k2)2 (53)

Using Eqs. (3), (4), (51), and (53), we get

SHP
r (q) 5

1
q 2 1 F1 2

p12q

q3 1a1

a 2
3(q21)G (54)

and

SHP
g ( p) 5

1
p 2 1 F1 2 1a1

a 2
3(12p)

23p

p2p23/2

G(4p 2 3/2)
G(4p) G (55)

We point out here that in the unscreening limit a1/a → 1, we recover
the results for the Coulomb potential as in H(1s) given in Eqs. (30) and (31).
One can easily verify using Eqs. (54) and (55) that the uncertainty relation
and pseudoadditivity relation are independent of the screening parameter a1/a.

The exact 2s wavefunction for the Hulthén potential in coordinate space
can be obtained similarly from the general s-state eigenfunction given in
Flügge (1974). The normalized 2s wavefunction is given by

C2s(r) 5
N1

!8p
e2(a1/a)r(1 2 #e2r/a) (56)
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where

N1 5 F12a1

a 2
23

2 2#12a1 1 1
a 2

23

1 #212a1 1 2
a 2

23G21/2

(57)

with # 5 (2a1 1 3)/(2a1 1 1). The corresponding normalized 2p wavefunc-
tion as obtained by Laha et al. (1988) using a supersymmetry-inspired radial
ladder operator is given by

C2p(r) 5
N2

!2
e2(a2/a)r(1 2 e2r/a)Y1m(V) (58)

where

a2 5
V0a2

2
2 1 (59)

and

N2 5 F12a2

a 2
23

2 212a2 1 1
a 2

23

1 12a2 1 2
a 2

23G21/2

(60)

and Y1m(V) is the scalar spherical harmonic with m 5 0, 61. Since the radial
parts of the above two wavefunctions are almost the same in structure, the
calculation of the radial part will be almost the same. However, the existence
of the variable angular part in 2p makes it more generalized and so we
consider only the 2p wavefunction here to calculate the information entropies.
We have to consider two cases, depending on the value of m. The entrop-
ies become

SHP
r (q) 5

1
q 2 1 F1 2

(!3N2)2q

2q 1 1
p12q

23q22 I8G for m 5 0 (61)

SHP
r (q) 5

1
q 2 1 F1 2

(!3N2)2q2124q

pq23/2 I8G for m 5 61 (62)

where

I8 5 #
`

0

e2(2qa/a)r(1 2 e2r/a)2qr 2 dr (63)

Introducing the change of variable x 5 e2r/a, we rewrite and evaluate I8 as
(Gradshetyn and Ryzhik, 1965)
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I8 5 2a3 #
1

0

(1 2 x)2qx2a2q
21 ln x dx

5 2a3B(2a2q, 2q 1 1)[c(2a2q) 2 c(2q(a2 1 1) 1 1)] (64)

where B(x, y) and c(x) denote the usual beta and psi functions, respectively
(Gradshetyn and Ryzhik, 1965). We note that in the case of the 2s wave
function we will get a similar integral to I8 with ln x replaced by (ln x 2 ln
#) due to the presence of the constant # in the wave function, which can
alse be evaluated analytically.

In handling the angular part in all the above cases we used the following
basic integrals:

#
p

0

cos2q(u) sin(u) du 5
2

2q 1 1
(65)

#
p

0

sin2q11(u) du 5
p1/2G(q 1 1)
G(q 1 3/2)

(66)

The momentum-space wavefunction for the 2p state is

C̃2p(k) 5 2i
2N2

!p
(2a2 1 1)a4k

3
(a2

2 1 a2k2) 1 [(a2 1 1)2 1 a2k2]

{(a2
2 1 a2k2)[(a2 1 1)2 1 a2k2]}2 Y1m(Ṽ) (67)

Now using (67), we obtain the momentum-space information entropy as

SHP
g ( p) 5

1
p 2 1 F1 2 (21)p 4p12p

2p 1 1
(!3N2(2a2 1 1)a4)2pI9G

for m 5 0 (68)

SHP
g ( p) 5

1
p 2 1 F1 2

(21)p 212p

p2p23/2 (!3N2(2a2 1 1)a4)2p G( p 1 1)
G( p 1 3/2)

I9G
for m 5 61 (69)

where

I9 5 #
`

0

(a2
2 1 (a2 1 1)2 1 2a2k2)2pk2p12

(a2
2 1 a2k2)4p((a2 1 1)2 1 a2k2)4p dk (70)

I9 can be evaluated numerically for general values of p. However, for
small values of p, analytical results are obtainable. For example, if we consider
p 5 1/2, we can evaluate I9 as
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I9 5
ln(1 1 a2) 2 ln a2

(1 1 2a2)a4 (71)

In conclusion, we have employed the Tsallis entropy formalism for
simple quantum mechanical systems that are exactly solvable. We have calcu-
lated the position and momentum entropies for the D-dimensional harmonic
oscillator (with D 5 1, 2, and 3) for both the ground and excited states and
observed the variation of Sr and Sg with the principal quantum number n and
the characteristic parameters p and q. We have done the same with the
hydrogen atom in three dimensions. In both cases we have given analytical
results for the entropy integrals that involve classical orthogonal polynomials
like Laguerre and Hermite polynomials. We have also verified the generalized
entropic relations. In the case of the harmonic oscillator they have been found
to be independent of the potential strength. Finally, we have considered the
screened Coulomb potential. On very general grounds one knows that in a
screened hydrogenic system an electron experiences a more repulsive environ-
ment than is found in a pure Coulomb field. A screened Coulomb wavefunc-
tion is thus likely to be pushed apart leading to a relatively diffused probability
density in position space. Consequently, SHP

r should be greater than SH
r . Our

result in (54) clearly indicates this since for all real situations a1/a , 1.
Understandably, the opposite will happen for SH

g P. Moreover, the uncertainty
relations have been found to be independent of the screening parameter, in
other words, we have seen that the combination of enropies in (6) and (7)
is identical both for the Coulomb and screened Coulomb interaction. This
result is indeed physically appealing, since the net information content is
invariant to the scale transformation.
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